Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daniel E. Lynch ${ }^{\text {a }}$ * and Ian McClenaghan ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ${ }^{\mathbf{b}}$ Key Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail:
apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study $T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.094$
$w R$ factor $=0.251$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 2-(2-chloro-1,4-dihydro-1,4-dioxo-naphthalen-3-ylamino)-4-phenylthiazole-5-carboxylate

The structure of the title compound, $\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$, comprises non-planar molecules that form a one-dimensional hydrogen-bonded chain via a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction, which runs parallel to the b axis. The dihedral angle between the thiazole and quinone rings is $50.43(7)^{\circ}$ and the dihedral angle between the thiazole and the phenyl rings is $52.4(1)^{\circ}$.

Comment

The title compound, (I), was prepared with the intention of merging two separate studies that we have recently undertaken. One study involved the synthesis and structural properties of 2-substituted 3-chloro-1,4-naphthoquinones (Lynch \& McClenaghan, 2002; 2003), while the other involved 2aminothiazoles. From the latter study came the structure of the thiazole derivative used to prepare (I), viz. ethyl 2-amino-4-phenylthiazole-5-carboxylate (Lynch \& McClenaghan, 2000). By bringing together the two series of molecules, we are interested in examining the combined structural aspects of the resultant covalently linked products, especially considering the forced proximity of one $\mathrm{N}-\mathrm{H}$ hydrogen-bond donor with five hydrogen-bond acceptors (viz. two O atoms, one N atom, one Cl atom and one S atom). The structure of (I) comprises non-planar molecules, the dihedral angle between the thiazole and quinone rings being 50.43 (7) ${ }^{\circ}$ and the dihedral angle between the thiazole and phenyl rings being 52.4 (1) ${ }^{\circ}$. The equivalent dihedral angle in the parent thiazole molecule is 42.41 (6) ${ }^{\circ}$.

Molecules of (I) form a one-dimensional hydrogen-bonded chain via a single $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction [graph set $C(6)$; Etter, 1990], which runs parallel to the b axis; hydrogen-bonding geometry is given in Table 1. A close contact $\mathrm{C} 25-$ $\mathrm{H} 25 \cdots \mathrm{O} 21^{\mathrm{i}}\left[\mathrm{C} \cdots \mathrm{O}^{\mathrm{i}}=3.165\right.$ (3) $\AA, \mathrm{H} \cdots \mathrm{O}^{\mathrm{i}}=2.22 \AA$ and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}^{\mathrm{i}}=172^{\circ}$; symmetry code: (i) $\left.x, 1+y, z\right]$ exists adjacent to the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction and thus completes an $R_{2}^{2}(10)$ graph-set motif.

Received 17 February 2005 Accepted 21 February 2005 Online 24 February 2005

Experimental

The title compound was obtained from Key Organics Ltd and crystals were grown from an ethanol solution.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=438.87$
Monoclinic, $P 2_{d} / c$
$a=19.191(5) \AA$
$b=7.719(2) \AA$
$c=12.640(3) \AA$
$\beta=94.845(18)^{\circ}$
$V=1865.6(8) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.563 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4585 \\
& \quad \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=0.35 \mathrm{~mm}^{-1} \\
& T=120(2) \mathrm{K} \\
& \text { Plate, orange } \\
& 0.18 \times 0.14 \times 0.02 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.939, T_{\text {max }}=0.993$
34099 measured reflections
3672 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-23 \rightarrow 23$
$k=-9 \rightarrow 9$
$l=-15 \rightarrow 15$
3678 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.094$
$w R\left(F^{2}\right)=0.251$
$S=1.14$
3678 reflections
276 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{gathered}
\begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0933 P)^{2}\right. \\
\quad+12.2716 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.66 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.62 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 21-\mathrm{H} 21 \cdots \mathrm{O} 24^{\mathrm{i}}$	$0.86(2)$	$2.27(2)$	$3.066(3)$	$154(2)$

Symmetry code: (i) $x, y-1, z$.

The amino H atom was located in a difference Fourier synthesis and its positional parameters were refined. Other H atoms were included in the refinement at calculated positions in the riding-model approximation, with $\mathrm{C}-\mathrm{H}$ distances of 0.95 (aromatic H atoms), 0.98 $\left(\mathrm{CH}_{3} \mathrm{H}\right.$ atoms $)$ and $0.99 \AA\left(\mathrm{CH}_{2} \mathrm{H}\right.$ atoms $)$. The isotropic displacement parameters for all H atoms were set equal to $1.25 U_{\text {eq }}$ of the

Figure 1
The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radius.
carrier atom. The high R value in this structure was a direct consequence of poor data from poor-quality twinned crystals; the nonmerohedral twinning was refined as two components with ratio 0.5207 (8):0.4793 (8).

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski \& Minor, 1997) and COLLECT; data reduction: $D E N Z O$ and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Lynch, D. E. \& McClenaghan, I. (2000). Acta Cryst. C56, e586.
Lynch, D. E. \& McClenaghan, I. (2002). Acta Cryst. C58, o704-o707.
Lynch, D. E. \& McClenaghan, I. (2003). Acta Cryst. E59, o1427-o1428.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276,
Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and
R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

